

FAQs - § 14a

by EEBus Initiative e.V.

#	Question	Answer
1	When does § 14a come into	From 01.01.2024, all devices affected by §14a
	force?	must be controllable, regardless of whether the
		DSO actually controls them. If it turns out later
		that the DSO cannot control the device, the
		operator/end customer must retrofit at their own
		expense. Therefore, it is important to install the
		correct interfaces from now on. With EEBUS,
		control is possible, which is mentioned as
		example by both the BNetzA and the BSI.
2	Does § 14a specifically refer	§ 14a EnWG only refers to consumption limits. To
-	only to the consumption	fulfil § 9 EEG the use case Limitation of Power
	control or also to production	Production (LPP) is necessary. Therefore, the FNN
	limits?	specification requires Limitation of Power
		Consumption (LPC) and LPP for the control box.
		EMSs that combine PV systems with self-
		consumption optimisation need both.
3	How often will the DSO send	The DSO has to send a limit promptly after an
	control commands? What is	imminent grid congestion based on a
	the required response time?	determination of the state of the grid network.
		This will only happen in emergencies and not
		every day.
		The controllable device should apply the limit
		promtly: charging stations in seconds, heat
		pumps in minutes.
4	Which EEBUS use cases are	The Limitation of Power Consumption (LPC) use
	relevant to fulfil § 14a?	case is relevant for energy-consuming devices.
		However, there is another law § 9 EEG. For this
		law Limitation of Power Production (LPP) is
		relevant for energy producing devices.
5	Are there any specific	Yes, please refer to the description of the BNetzA
	requirements for controllable	regulation on § 14a and TR-03109-5 of the BSI.
	devices?	The requirements mainly concern functional and
		IT security requirements for the control interface
		and documentation obligations. Both are fulfilled
		by the use of EEBUS.
6	Does the Grid Connection	EEBUS fulfils the requirements of the German
	Point Hub (SMGW + control	Federal Network Agency (BNetzA) and the
	unit) support any other	German Federal Office for Information Security
	communication other than	(BSI) and is currently the only interface which is
	EEBUS to send the limits to	explicitly mentioned in both regulations.
	EMS/end devices?	However, this does not mean that other
		interfaces (e.g., KNX) cannot also fulfil the
		requirements. As of today, we are only aware of
		installations with EEBUS interface.
7	If a certified EMS is used,	There is not yet a certification process for § 14a
	does the controllable device	compliance at the controllable device level.
	need to produce a § 14a	However, if the necessary EEBUS use case If

8	compliance certificate/declaration?	Limitation of Power Consumption (LPC) is fully and correctly implemented, the technical requirements of § 14a are automatically met. Furthermore, we also recommend the implementation of Monitoring of Power Consumption (MPC), see the recently published white paper on EEBUS solutions. In the case of an Energy Management System (EMS) using EEBUS towards the grid, the operator or the manufacturer of the EMS is responsible for the correct implementation of the control command in the controlled devices behind the EMS. In the case of EEBUS devices, this is implicitly always guaranteed, whereas all other implementations of control commands must be checked on a case-by-case basis. This applies in particular to the documentation obligation outlined in § 14a, which is also implicitly covered by EEBUS devices. The main difference between an SMGW and a control box is their functionality and purpose. The SMGW is designed to manage the cyber-secure communication between smart meters, devices on the premises and utility companies for all energy-economical-related data. A control unit is a technical device that transmits control signals from the DSO are transmitted to the controllable devices. It incorporates a firewall in accordance with the legal requirements of the BSI TR 03109-5 and separates the utility IT network from the customer network. An FNN control box may serve as a control device, and can also exist in other physical manifestations, e.g. as an integrated
9	Will there always be a control	solution in an SMGW. Theoretically, the EMS can be connected directly
	unit on site? Or can the EMS be connected directly to the SMGW?	to the SMGW, but then it becomes a component that must go through the BSI certification process, resulting in higher higher security requirements for the EMS. This will not be necessary if the EMS is connected to the control box. Therefore, we assume that a control unit will be installed at the grid connection in the first instance. A control unit can be an FNN control box, an additional module to the SMGW or a control functionality integrated in the SMGW in the future.
10	Do all control units support	We have tested several control units with EEBUS
	EEBUS?	interface in our Living Lab Cologne. These control

11	How does the communication between grid operator and SMGW, smart meter or control box look like?	units can control devices directly or via an EMS. Some manufacturers have solutions that only support control via relays, which are usually updatable and can support a digital interface. As of today, we only know of devices with EEBUS as a solution, but we do not exclude that other solutions (e.g. KNX) will be possible for more complex buildings. How the communication between the grid operator and the SMGW/control box works is decided by the metering point operator, who is responsible and installs the necessary technology. EEBUS fulfils the requirements of the BNetzA and BSI from the
	uke:	control box output (in future also from the SMGW output).
12	What interface is used as communication between the control box and the EMS/end device?	From the output of the control box (in the future also SMGW) EEBUS fulfills the requirements of BNetzA and BSI. In both regulations EEBUS is currently mentioned as the only example for a communication interface, which does not mean that other communication interfaces do not also fulfil the requirements.
13	How must EMS manufacturers comply with § 14a? Do different rules apply to an EMS according to § 14a?	The same requirements of § 14a that apply to controllable devices also apply to an EMS. Operators and device manufacturers must ensure and prove that control commands are successful. There is currently no regulation or certification process for the EMS itself. However, only if the control unit and EMS are merged into one device, the EMS must be certified under BSI- TR-03109-5 as well. This only covers IT security, not the logic and algorithms of the EMS itself. If an EMS is installed behind a control unit (e.g. control box) that uses EEBUS, no additional certification is required. EEBUS is currently the only interface which is explicitly mentioned in the regulations of BNetzA and BSI. However, this does not mean that other interfaces (e.g., KNX) cannot also fulfill the requirements.
14	How is the EEBUS interface defined? Is there an FNN guideline to refer to?	There are several specifications: The complete specification of the EEBUS interface can be downloaded from the homepage <u>www.eebus.org</u> . It is also published as accepted state of technology in the VDE: VDE 2829-6 series. These documents are currently congruent. For possible future updates and clarifications, please refer to the EEBUS homepage. The use of VDE-2829-6 in

		the context of grid control (§ 14a) is also
15	Deep S 1 de algo affact	described in the FNN specification.
15	Does § 14a also affect	§ 14a obliges every household to install in the future controllable devices. The easiest way is to
	already installed devices? Will households have to	install only intelligent controllable devices. It is
	change or retrofit installed	important when buying a new device. This does
	devices?	
10		not apply to devices installed before 01.01.2024.
16	Can the Metering Point	In line with the regulatory price requirements,
	Operator or DSO prescribe	metering point operators are installing
	EEBUS as the digital interface	standardised control technology throughout
	for existing systems that want	Germany. The BNetzA and BSI have set the
	to switch to a § 14a	course by naming EEBUS in their regulations, and
	specification? Does this mean that the systems have	market developments confirm this.
	to be retrofitted?	There will be control technology that supports
		multiple protocols, but this will have to be paid
		for separately by the customer. The same will
		happen with relay contacts in the long term.
		If the DSO inspects in the next few years and the
		customer cannot be controlled with the interface
		supported by the DSO, the customer will have to
		retrofit at his own expense.
17	One device can be limited to	Within a group of devices, the devices are added
	consume 4.2kW.	together. Therefore, even if there are five heat
	If you have multiple	pumps installed in a building, each consuming
	HPs/HVAC devices, should	less than 4.2kW, their consumption is added
	they be counted as a single	together. As a result, each device covered by §
	unit? Do devices <4.2kW	14a must be controllable, even if it consumes
	count towards this total?	less than 4.2kW.
	Who is responsible for	The devices are registered at the DSO, so it is the
	calculating the power limit?	DSO that has the necessary information to
		calculate the power limits.
18	How can a company check, if	It is possible to test the device at the Living Lab
	its device is § 14a compliant?	Cologne. Visit the Living Lab Cologne website for
		more information on § 14a compatibility.
19	Is it already clear how § 14a	Only EEBUS is mentioned in the BNetzA paper as
	will be implemented	a technology that meets the requirements of §
	technically or will it be only	14a. The use of EEBUS is therefore a safe way to
20	defined in October 2024? The BNetzA has set a	fulfil the requirements. Our observation is that many companies have
20	deadline of October 2024.	
	Are the manufacturers of end	already implemented the use case Limitation of Power Consumption and are ready for § 14a
		Power Consumption and are ready for § 14a.
	devices (wallbox, inverter,	Some other companies are now looking for ways to do it. The discussion about § 14a is not new but
	heat pump) keeping up with	
	the speed?	has been going on for five years. The regulation
		that has been put into practice has been quite
		clear for a year.

21	Do you already have a	Our Dynamic Pricing solution aims to offer
	concept for the	variable tariffs and other incentives to
	implementation of module 3	consumers. The Time of Use Tariff use case
	of § 14a variable	enables the DSO or ESP to send incentive tables
	transmission fees?	with energy prices or transmission fees to the
		EMS. The EMS then sends calculated incentive
		tables (including information from the PV
		inverter) to the end devices, which can adjust
		their consumption to operate at the most cost-
		effective level.
22	Can the EMS be in the cloud	Legal requirements in Germany only allow local
22	and control the end devices	transmission of power limitation via an SMGW.
	from the cloud?	The relevant law is MSBG § 19: Only technical
		systems and components that meet the
		requirements of § 21 and 22 may be used to
		process energy-relevant metering and control
		operations. This makes the use of the SMGW
		infrastructure mandatory. The transfer of the
		power limitation to the cloud for the control of
		devices via cloud2cloud communication
		bypasses the IT security architecture of § 19
		MSBG. In our view, this approach runs the risk of
		being prohibited by the regulator. Concrete
		statements from the BNetzA have not yet been
		published.
		Cloud providers cannot actively distribute the
		singals to all installed devices in the most
		effective and efficient way. That is why a local
		EMS is the better choice as it has the advantage
		of optimising energy flows across all devices.
23	Is it possible to have an EMS	At the time of registration it must be clear
20	just for the charging	whether each device is to be controlled directly
	infrastructure and connect	or by EMS.
	the heat pump directly to the	
	control unit?	It is possible to control two devices directly, e.g.
		an installed device via relay control and a new
		device via a digital interface. Both devices will
		always be dimmed/switched off. We recommend
		to use an EMS as soon as two devices are
		connected. Only then the devices can be
		-
		operated according to the needs and
		configurations of the consumer and the
		intelligence of the EMS can be used. An EMS is
		indispensable at the latest when a PV system is
		installed. For this reason, associations such as
		FNN, ZVEI and ZVEH, etc. recommend that only
		devices with a digital interface should be used for

		now installations and relais control should ask
		new installations and relais control should only
		be used for devices that are already installed.
24	Does EEBUS have a use case	With the use case Monitoring of Grid Connection
	that can share the meter's	Point, the meter's reading can be communicated.
	readings and if so, what are	It is not defined, how often the data must be
	the parameters and	transmitted. The transmission rate depends on
	frequency of data sharing?	the characteristics of the meter. The following
		empirical formula could help: If the
		measurement intervals need to be significantly
		less than one second, faster sub-meters are
		used. With an SMGW, measurement intervals of
		only about one second are possible.
25	Do heat pumps and air	Yes, there are manufacturers that already support
_	conditioners already have	EEBUS. Use cases are available for heat pumps
	native support for EEBUS?	that produce heat or cooling. Air conditioners are
		not explicitly covered yet but will be supported as
		well in the near future.
26	Who is responsible for	The connection between the Smart Meter
20	pairing between the SMGW	Gateway (more precisely: the control device
	and the EMS /controllable	connected to the SMGW) and the controllable
	device?	
		device must be encrypted according to the legal
	Is it possible to automate the	requirements (TR-03109-5 by BSI). To do this, the
	approval of the control box in	DSO employee (more precisely: the designated
	the user interface of the	metering point operator) must read the network
	controlled device?	key of the controllable device or provide the
		device operator with a corresponding portal
		where they can enter the network key himself.
		The network key is the Subject Key Identifier (SKI),
		which is derived from the TLS1.2 certificate. It can
		be read out via the SHIP text record in EEBUS or
		provided in another way (e.g., QR code). Due to
		the security concept the approval of the control
		unit must always be done by a person.
27	How does EEBUS help to	EEBUS has already developed the necessary use
	drive the digitalisation of the	cases and standards for the realisation of § 14a.
	energy transition and the	In addition, we have use cases in our portfolio
	necessary digital grid	that enable dynamic pricing (e.g., for lower grid
	connection?	fees) and we are working on further use cases for
		the use of flexibilities as a preventive measure. To
		share this information, we participate in
		standardisation committees, present at various
		national and international events, take part in
		funded projects, and are in frequent contact with
		stakeholders in the energy management market.